snrg.net
当前位置:首页 >> 基础解系怎么求例题 >>

基础解系怎么求例题

第一步,先把系数矩阵A化为行最简形 第二步,写出行最简形对应的齐次方程,以每一行第一个1对应的分量为未知数求解 如A的行最简形为1 0 2 10 1 1 -30 0 0 0 则行最简形对应的齐次方程可简单的写成:x1 +2x3 +x4=0 x2 +x3 -3x4=0 分别取x3=1,x4=0和x3=0,x4=1代入 可以求得两个解向量,就构成了基础解析

下面的基础解系是 (9, 1, -1)^T或 (1, 0, 4)^T.解:方程组 同解变形为4x1-x2-x3 = 0 即 x3 = 4x1-x2 取 x1 = 0, x2 = 1, 得基础解系 (9, 1, -1)^T; 取 x1 = 1, x2 = 0, 得基础解系 (1, 0, 4)^T.扩展资料:线性代数的基础解系求法:基础解系针

这是4阶矩阵,秩为2,所以有两个基础解.设x1,x2,x3,x4为(x1,x2,1,0)和(x1,x2,0,1),代入计算得到(1,-2,1,0)和(2,-3,0,1)两个解就ok了.

x = -nx-(n-1)x--2x 取 x = 1, x==x = 0,得基础解系 (1, 0, 0, , 0, -n)^T; 取 x = 1, x=x==x = 0,得基础解系 (0, 1, 0, , 0, -n+1)^T;..取 x = 1, x==x = 0,得基础解系 (0, 0, 0, , 1, -2)^T;

展开 作业帮用户 2016-12-05 举报

一、用行变换化为阶梯型,其实最好化成行最简性,每行打头为1,且这些1都独占一列(该列其他元素都为0),这些1都在主对角线上,也可以看秩为几,则基础解析的个数边为行列式阶数减去秩的个数;二、换另外一支笔,把主对角线上的零

系数矩阵(1,1,1)的秩是1,x1+x2+x3=0的基础解系有两个自由求知量,x1= -x2-x3令x2=1,x3=0得 x1= -1,x2=1,x3=0令 x2=0,x3=1,得x1= -1,x2 =0,x3=1基础解系为(x1,x2,x3)^T=c1(-1,1,0)^T+c2(-1,0,1)^Tc1、c2为任意常

先把系数矩阵用初等行变换到阶梯形式,那么每一行的最开始非零列数就不是自由变量,除开这些列,其他的就是自由变量.然后自己定这些数的值,再就是带入方程求解.得到的就是基础解系.

您好,推荐您看一下线性代数的书,里面有详细的介绍以及例题的讲解.我这里简单说一下什么是基础解系及怎么求解基础解系.1.基础解系首先是线性无关的,简单的理解就是能够用它的线性组合表示出该方程组的任意一组解.2.基础解系是针对有无数多组解的方程而言,若是齐次线性方程组则应是有效方程组的个数少于未知数的个数,若非齐次则应是系数矩阵的秩等于增广矩阵的秩,且都小于未知数的个数.3.基础解系不是唯一的,因个人计算时对自由未知量的取法而异,但不同的基础解系之间必定对应着某种线性关系.

这个题挺基础的,解答也挺清楚的,不知道你具体是哪一步不明白?在得基础解系的时候,要先对系数矩阵做初等变换化简,(就是“得基础解系”上面那个方程的):[-1,-2,1;2,4,-2;-3,-6,3]→[1,2,-1;0,0,0;0,0,0],则原方程变为 x1 = -2x2 + x3 再令x2=1 , x3=0 ,得ξ1=[-2,1,0] ;令x2=0 , x3=1 得ξ2=[1,0,1].还有不明白的地方吗?

网站首页 | 网站地图
All rights reserved Powered by www.snrg.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com